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Abstract. The completeness theorem of equational logic of Birkhoff asserts
the coincidence of the model-theoretic and proof-theoretic consequence rela-
tions. Goguen and Meseguer, giving a sound and adequate system of infer-
ence rules for many-sorted deduction, generalized the completeness theorem
of Birkhoff to the completeness of many-sorted equational logic and provided
simultaneously a full algebraization of many-sorted equational deduction. In
this paper, after simplifying the presentation of Hall algebras and the inference
rules given by Goguen-Meseguer, we give another proof of the completeness
theorem by using the Bénabou algebras and, once defined the concepts of
equational class and equational theory for a monad in a category and the con-
cept of lim←−-compatible congruence on a category, we prove that the lattice

of Π-compatible congruences on the category of polynomials for a monad in
a category of sorted sets is identical to the lattice of equational theories for
the same monad. In this way we obtain a completeness theorem for mon-
ads in categories of sorted sets, hence independent of any explicit syntactical
representation of the relevant concepts, that generalizes the completeness the-
orem of Goguen-Meseguer and provides a full categorization of many-sorted
equational deduction.

1. Introduction.

The completeness theorem of many-sorted equational logic of Goguen-Meseguer,
see [5], under which falls the classical completeness theorem of equational logic
of Birkhoff, see [2], asserts the coincidence of two closure operators on the set
EqH(Σ) of finitary Σ-equations, for an S-sorted signature Σ and an S-sorted set
of variables V = (Vs)s∈S where, for every s in S, Vs = { vs

n | n ∈ N }. One
of the closure operators, the semantical consequence operator, denoted by CnΣ,
is obtained from the contravariant Galois connection between the ordered class
Sub(Alg(Σ)), of subclasses of Alg(Σ), and the ordered set Sub(EqH(Σ)), of sub-
sets of EqH(Σ), composing the operators ModΣ : Sub(EqH(Σ)) // Sub(Alg(Σ))
and ThΣ : Sub(Alg(Σ)) // Sub(EqH(Σ)), obtained from the ternary satisfiabil-
ity relation between valuations, many-sorted Σ-algebras and finitary Σ-equations.
The other closure operator, the formal consequence operator, can be obtained not
only from axioms and inference rules but also, alternatively, as has been pointed
out by Goguen and Meseguer in [5], as the operator CgPolH(Σ), of generated con-
gruence, on the Hall algebra PolH(Σ) that has as underlying S? × S-sorted set
(FrΣ(↓w)s)(w,s)∈S?×S where, for w ∈ S?, ↓w is the S-sorted set that has as s-th
coordinate the subset { vs

i ∈ Vs | w(i) = s } of Vs while FrΣ(↓w) is the underlying
S-sorted set of FrΣ(↓w), the free many-sorted Σ-algebra on ↓w. For this alternative
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point of view it is essential to conceive of the sets of finitary Σ-equations as subsets
of the square of the Hall algebra PolH(Σ), i.e., to think of such sets as parts of the
square of an algebraic construct and not of an unstructured object as in the first al-
ternative. This point of view allows a full algebraization of many-sorted equational
deduction.

In the second section, after simplifying the presentation of Hall algebras and
the inference rules given by Goguen-Meseguer, we define the concept of Bénabou
algebra, in order to give another proof of the completeness theorem, and prove that
the category of Bénabou theories, defined in [1], is isomorphic to the category of
Bénabou algebras and also that the category of Hall algebras, used by Goguen-
Meseguer in their proof, is equivalent to that of Bénabou algebras. We point
out that in [3] the Bénabou algebras have also been used to define what we have
called morphisms of Fujiwara from a many-sorted signature into another (such
morphisms consists of two suitably related mappings: On the one hand, a mapping
that relates the sets of sorts of the many-sorted signatures and assigns to each
sort in the first, a derived sort in the second, i.e., a word on the set of sorts of
the second, and, on the other hand, a mapping that assigns to each operation in
the first, a family of many-sorted polynomials in the second, all in such a way
that both transformations are compatible), as well as morphisms from a many-
sorted specification into another, and we remark that the hypersubstitutions are a
particular case of the above morphisms between many-sorted signatures.

Now, if we consider that a monad (exactly, those that arise from an algebraic
adjunction) is what remains invariant under change of algebraic presentation or,
in other words, if we take into account the equivalence between monads and theo-
ries, then it seems natural to intend to prove directly a completeness theorem for
monads, hence independent of any explicit syntactical representation of the rele-
vant concepts. But, as we will see, it happens that such a direct proof is not an
automatic translation of the above mentioned proofs.

In the third section, in order to obtain a direct completeness theorem for monads,
not necessarily finitary, we define polynomials, equations and validity for monads.
Once this is done we also obtain a contravariant Galois connection between the
ordered class Sub(EM(T)), of subclasses of EM(T), the Eilenberg-Moore category
for the monad T, and the ordered class Sub(Eq(T)), of subclasses of Eq(T), the
equations for the monad T, from such a connection we obtain the semantical conse-
quence operator, CnT, on Eq(T) composing ModT : Sub(Eq(T)) // Sub(EM(T))
and ThT : Sub(EM(T)) // Sub(Eq(T)).

In the last section, in order to obtain the missing formal consequence operator
on Eq(T) we define the concept of Π-compatible congruence on a category and take
into account that Eq(T) is a subfamily of the square of the family of the hom-sets of
the category Pol(T) of polynomials for T, the dual of the Kleisli category Kl(T) of
the monad T, and from this the formal consequence operator arises as the operator
CgΠ

Pol(T), generated Π-compatible congruence, on Pol(T). Finally, the completeness
theorem for monads in categories of sorted sets asserts the coincidence between
both operators or, what amounts to the same, that the lattice of Π-compatible
congruences on the category of polynomials for a monad in a category of sorted
sets is identical to the lattice of equational theories for the monad.

In this way the completeness theorem of many-sorted equational logic of Goguen-
Meseguer and the classical completeness theorem of equational logic of Birkhoff, are
instances of this completeness theorem and this last is, in addition, invariant under
presentations. We believe that from the above we obtain a full categorization of
many-sorted equational deduction.
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In what follows we use standard concepts from many-sorted algebra and category
theory, see e.g., [5] for many-sorted algebra and [6] for category theory. Moreover,
every set we consider will be an element or subset of a Grothendieck universe U ,
fixed once and for all.

2. Hall algebras, the many-sorted completeness of
Goguen-Meseguer and Bénabou algebras.

The Hall algebras formalize the concept of substitution for the finitary poly-
nomials and that of generalized composition for the many-sorted operations on a
sorted set. In this section we define the variety of Hall algebras, through an axiom
system less redundant than that presented in [5] and, from the completeness theo-
rem of many-sorted equational logic, we obtain a many-sorted equational calculus
from which we prove that the rules of abstraction and concretion in [5] are derived
rules, hence providing a somewhat less redundant set of sound and adequate infer-
ence rules than in [5]. Moreover, once defined the category of Bénabou algebras
we prove that it is isomorphic to the category of Bénabou theories in [1], that the
category of Hall algebras is equivalent to the category of Bénabou algebras and,
additionally, we give an alternative proof of the Completeness Theorem through
the Bénabou algebras.

But before that we consider, for a set of sorts S and an S-sorted signature
Σ, the concepts of finitary Σ-polynomial, finitary Σ-equation and the relation of
validation between finitary Σ-equations and Σ-algebras. From these concepts we
obtain, as is well known, a contravariant Galois connection between the ordered set
of families of finitary Σ-equations and the ordered class of families of Σ-algebras
and, in particular, the closure operator of semantical consequence on the set of
finitary Σ-equations.

Definition 1. Let Σ be an S-sorted signature, w ∈ S? and s ∈ S.
(1) A finitary Σ-polynomial of type (w, s) is a mapping P : δs // FrΣ(↓w)

where δs = (δs
t )t∈S , the delta of Kronecker in s, is such that δs

t = ∅ if s 6= t
and δs

s = 1.
(2) A finitary Σ-equation of type (w, s) is a pair (P, Q) of finitary Σ-polynomials

of type (w, s).
We agree that PolH(Σ) denotes the many-sorted set of finitary Σ-polynomials,

i.e., (HomSetS (δs,FrΣ(↓w)))(w,s)∈S?×S , identified to (FrΣ(↓w)s)(w,s)∈S?×S . On
the other hand, EqH(Σ) denotes the many-sorted set of finitary Σ-equations, i.e.,
(HomSetS (δs,FrΣ(↓w))2)(w,s)∈S?×S , identified to (FrΣ(↓w)2s)(w,s)∈S?×S . We point
out that the above identifications can be made because the deltas of Kronecker are
a system of generators for the category SetS .

Now we define for an S-sorted signature Σ, on the one hand, the realization
of the finitary Σ-polynomials in the Σ-algebras and, on the other, the concept of
validation of a finitary Σ-equation in a Σ-algebra.

Definition 2. Let Σ be an S-sorted signature, w ∈ S?, s ∈ S and A a Σ-algebra.
Then every finitary Σ-polynomial P : δs // FrΣ(↓w) determines a mapping PA

from HomSetS (↓w, A) to HomSetS (δs, A), the realization of P in A, that to a map-
ping f : ↓w // A assigns f ] ◦ P : δs // A where f ] is the canonical extension of
f to FrΣ(↓w).

Definition 3. Let A be a Σ-algebra and (P, Q) a finitary Σ-equation of type
(w, s). We say that (P,Q) is valid in A, denoted by A |=Σ

w,s (P, Q), if PA = QA.
If K ⊆ Alg(Σ), then we agree that K |=Σ

w,s (P,Q) means that, for every A ∈ K,
A |=Σ

w,s (P, Q).
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We remark that the underlying reason for the definition we have made of the
finitary Σ-polynomials, the realization of finitary Σ-polynomials and the validation
relation, will become clear when these concepts be compared with the corresponding
ones, in a later section, for a monad T in a category.

From the concept of validation we obtain the following contravariant Galois
connection.

Definition 4. Let Σ be an S-sorted signature.
(1) If K ⊆ Alg(Σ), then ThΣ(K), the finitary Σ-equational theory determined

by K, has as elements the finitary Σ-equations (P, Q) : δs // FrΣ(↓w) such
that K |=Σ

w,s (P, Q), i.e.,

ThΣ(K) =
({

(P, Q) ∈ EqH(Σ)w,s | ∀A ∈ K (A |=Σ
w,s (P, Q))

})
(w,s)∈S?×S

(2) If E ⊆ EqH(Σ), then ModΣ(E), the finitary Σ-equational class determined
by E , has as elements the Σ-algebras A that validate each equation of E ,
i.e.,

ModΣ(E) =
{

A ∈ Alg(Σ)
∣∣∣∣
∀(w, s) ∈ S? × S, ∀(P, Q) ∈ Ew,s,

A |=Σ
w,s (P,Q)

}

Proposition 1. Let Σ be an S-sorted signature, E, E ′ two families of finitary
Σ-equations and K, K′ two classes of Σ-algebras. Then the following holds:

(1) If E ⊆ E ′, then ModΣ(E ′) ⊆ ModΣ(E).
(2) If K ⊆ K′, then ThΣ(K′) ⊆ ThΣ(K).
(3) E ⊆ ThΣ(ModΣ(E)) and K ⊆ ModΣ(ThΣ(K)).

Therefore the pair of mappings ThΣ and ModΣ is a contravariant Galois connection.

The categories associated to the lattices of classes of Σ-algebras and families
of finitary Σ-equations are related by the adjunction ModΣ a ThΣ, i.e., for every
class K of Σ-algebras and every family E of finitary Σ-equations, we have that
K ⊆ ModΣ(E) iff E ⊆ ThΣ(K), because of the contravariance.

Definition 5. We denote by CnΣ the closure operator ThΣ ◦ModΣ on EqH(Σ)
and we call the CnΣ-closed sets Σ-equational theories. If E is a family of fini-
tary Σ-equations and (P, Q) a finitary Σ-equation of type (w, s), then we say
that (P,Q) is a semantical consequence of E if ModΣ(E) ⊆ ModΣ(P, Q), i.e., if
(P, Q) ∈ ThΣ(ModΣ(E))w,s.

Now we define the Hall algebras through a many-sorted equational presentation
that differs from that in [5].

Definition 6. Let S be a set of sorts and V H the S? × S-sorted set of variables
(V(w,s))(w,s)∈S?×S where, for every (w, s) ∈ S? × S, V(w,s) = { vw,s

n | n ∈ N }. A
Hall algebra for S is a many-sorted (ΣH, EH)-algebra, where ΣH is (S?×S, ΣH) and
ΣH is the S?×S-sorted signature, i.e., the (S?×S)?× (S?×S)-sorted set, defined
as follows:

(1) For every w ∈ S? and i ∈ |w|,
πw

i : λ // (w,wi),

where |w| is the length of the word w and λ the empty word in (S? × S)?.
(2) For every u, w ∈ S? and s ∈ S,

ξu,w,s : ((w, s), (u,w0), . . . , (u,w|w|−1)) // (u, s).

while EH is the part of Eq(ΣH) = (FrΣH(↓w)2(u,s))(w,(u,s))∈(S?×S)?×(S?×S) defined
as follows:
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H1. Projection. For every u, w ∈ S? and i ∈ |w|, the equation

ξu,w,wi(π
w
i , vu,w0

0 , . . . , v
u,w|w|−1

|w|−1 ) = vu,wi

i

of type (((u,w0), . . . , (u, w|w|−1)), (u, wi)).
H2. Identity. For every u ∈ S? and j ∈ |u|, the equation

ξu,u,uj
(vu,uj

j , πu
0 , . . . , πu

|u|−1) = v
u,uj

j

of type (((u, uj)), (u, uj)).
H3. Associativity. For every u, v, w ∈ S? and s ∈ S, the equation

ξu,v,s(ξv,w,s(v
w,s
0 , vv,w0

1 , . . . , v
v,w|w|−1

|w| ), vu,v0
|w|+1, . . . , v

u,v|v|−1

|w|+|v| ) =

ξu,w,s(v
w,s
0 ,ξu,v,w0(v

v,w0
1 , vu,v0

|w|+1, . . . , v
u,v|v|−1

|w|+|v| ), . . . ,

ξu,v,w|w|−1(v
v,w|w|−1

|w| , vu,v0
|w|+1, . . . , v

u,v|v|−1

|w|+|v| ))

of type (((w, s), (v, w0), . . . , (v, w|w|−1), (u, v0), . . . (u, v|v|−1)), (u, s)).
Let us remark that from H3, for w = λ, we obtain the invariance of constant

functions axiom in [5]:
Invariance of constant functions. For every u, v ∈ S? and s ∈ S, we have
the equation

ξu,v,s(ξv,λ,s(v
λ,s
0 ), vu,v0

1 , . . . , v
u,v|v|−1

|v| ) = ξu,λ,s(v
λ,s
0 )

of type (((λ, s), (u, v0), . . . , (u, v|v|−1)), (u, s)).
We call the formal constants πw

i projections, and the formal many-sorted oper-
ations ξu,w,s substitution operators. Moreover, we denote by Alg(H) the category
of Hall algebras for S and homomorphisms between Hall algebras.

For every S-sorted set A, Op(A) = (HomSet(Aw, As))(w,s)∈S?×S , the S? × S-
sorted set of many-sorted operation for A, where, for w ∈ S?, Aw =

∏
i∈|w|Awi ,

is endowed with a structure of Hall algebra, if we realize the projections as the
true projections and the substitution operators as the generalized composition of
mappings. The closed sets of this many-sorted algebra are the clones of operations
and were investigated originally, for operations on ordinary sets, by Philip Hall (see
e.g., [4] or [7]).

Proposition 2. Let A be an S-sorted set and Op(A) the many-sorted ΣH-algebra
with underlying many-sorted set Op(A) and many-sorted algebraic structure F de-
fined as follows

(1) For every w ∈ S? and i ∈ |w|, Fπw
i

= prA
w,i : Aw

// Awi .
(2) For every u, w ∈ S? and s ∈ S, Fξu,w,s is defined, for every f ∈ AAw

s and g ∈
AAu

w , as Fξu,w,s(f, g0, . . . , g|w|−1) = f◦〈gi〉i∈|w|, where 〈gi〉i∈|w| is the unique
mapping from Au to Aw such that, for every i ∈ |w|, prA

w,i ◦ 〈gi〉i∈|w| = gi.
Then Op(A) is a Hall algebra.

We remark that, as a particular case of substitution, we also have Fξu,λ,s
, that

converts constants of type κa
λ,s into constants of type κa

u,s, for a ∈ As and u ∈ S?.
For every S-sorted signature Σ, PolH(Σ) = (FrΣ(↓w)s)(w,s)∈S?×S is also endowed

with a structure of Hall algebra that formalizes the concept of substitution.

Proposition 3. Let Σ be an S-sorted signature and PolH(Σ) the many-sorted ΣH-
algebra with underlying many-sorted set PolH(Σ) and many-sorted algebraic struc-
ture F defined as follows

(1) For every w ∈ S? and i ∈ |w|, Fπw
i

is the image under η↓wwi
of the variable

vwi
i , where η↓w = (η↓ws )s∈S is the canonical injection of ↓w into FrΣ(↓w).
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(2) For every u,w ∈ S? and s ∈ S, Fξu,w,s
is the mapping

Fξu,w,s

{
FrΣ(↓w)s × FrΣ(↓u)w0 × · · · × FrΣ(↓u)w|w|−1

// FrΣ(↓u)s

(P, (Qi | i ∈ |w|)) 7−→ Q]
s(P )

where, for Q the S-sorted mapping from ↓w to FrΣ(↓u) canonically asso-
ciated to the family (Qi | i ∈ |w|), Q] is the unique homomorphism from
FrΣ(↓w) into FrΣ(↓u) such that Q] ◦ η↓w = Q.

Then PolH(Σ) is a Hall algebra.

Now we prove that, for every S? × S-sorted set Σ, FrH(Σ), the free Hall algebra
on Σ, is isomorphic to PolH(Σ). This isomorphism together with the adjunction
FrHaGH has as consequence that, for every S-sorted set A and S-sorted signature
Σ, the sets HomSetS?×S (Σ, Op(A)) and HomAlg(H)(PolH(Σ), Op(A)) are naturally
isomorphic. Moreover, the isomorphism assigns to a many-sorted structure F on
A the homomorphism of Hall algebras Pd(A,F ), defined below, from PolH(Σ) into
Op(A) and the inverse mapping assigns to h : PolH(Σ) // Op(A), the many-sorted
algebraic structure GH(h) ◦ ηΣ on A.

Definition 7. Let A be a Hall algebra and Σ an S-sorted signature. Then, for every
f : Σ // A and u ∈ S?, Af,u, the derived many-sorted Σ-algebra of A for (f, u),
is the many-sorted Σ-algebra with underlying S-sorted set Af,u = (A(u,s))s∈S and
many-sorted algebraic structure F f,u, defined, for every (w, s) ∈ S? × S, as

F f,u
w,s





Σw,s
// Opw(Af,u)s

σ 7−→
{ ∏

i∈|w|A(u,wi)
// A(u,s)

(a0, . . . , a|w|−1) 7−→ ξ
A
u,w,s(f(w,s)(σ), a0, . . . , a|w|−1)

where Opw(Af,u) = (A
∏

i∈|w| A(u,wi)

(u,s) )s∈S and Opw(Af,u)s = A
∏

i∈|w| A(u,wi)

(u,s) . More-
over, we denote by pu the S-sorted mapping from ↓u into Af,u defined, for every
s ∈ S and i ∈ |u|, as pu

s (vs
i ) = (πu

i )A, and by (pu)] the unique homomorphism from
FrΣ(↓u) into Af,u such that (pu)] ◦ η↓u = pu.

Lemma 1. Let Σ be an S-sorted signature, A a Hall algebra, f : Σ // A and
u ∈ S?. Then, for every (w, s) ∈ S? × S, P ∈ FrΣ(↓w)s and a ∈ ∏

i∈|w|A(u,wi), we
have that

PAf,u

(a0, . . . , a|w|−1) = ξA
u,w,s((p

w)]
s(P ), a0, . . . , a|w|−1)

Proof. By algebraic induction on the complexity of P . ¤

Proposition 4. Let Σ be an S-sorted signature. Then the Hall algebra PolH(Σ) is
isomorphic to FrH(Σ).

Proof. It is enough to prove that PolH(Σ) has the universal property of the free
Hall algebra on Σ. Therefore we have to specify an S? × S-sorted mapping h from
Σ into PolH(Σ) such that, for every Hall algebra A and S? × S-sorted mapping f

from Σ into A, there is a unique homomorphism f̂ from PolH(Σ) into A such that
f̂ ◦ h = f . Let h be the S? × S-sorted mapping defined, for every (w, s) ∈ S? × S,
as

hw,s

{
Σw,s

// FrΣ(↓w)s

σ 7−→ σ(vs
0, . . . , v

s
|w|−1)

Let A be a Hall algebra, f : Σ // A an S? × S-sorted mapping and f̂ the S? × S-
sorted mapping from PolH(Σ) into A defined, for every (w, s) ∈ S?×S, as f̂(w,s) =
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(pw)]
s. Then f̂ is a homomorphism of Hall algebras, because, on the one hand, for

w ∈ S? and i ∈ |w| we have that

f̂(w,wi)((π
w
i )Pol(Σ)) = f̂(w,wi)(v

s
i )

= pw
wi

(vs
i )

= (πw
i )A

and, on the other hand, for P ∈ FrΣ(↓w)s and (Qi | i ∈ |w|) ∈ FrΣ(↓u)w we have
that

f̂(u,s)(ξPol(Σ)
u,w,s (P, Q0, . . . , Q|w|−1))

= (pu)]
s(Q]

s(P ))

= ((pu)] ◦ Q)]
s(P )

= PAf,u

((pu)]
w0

(Q0), . . . , (pu)]
w|w|−1

(Q|w|−1))

= ξA
u,w,s((p

w)]
s(P ), (pu)]

w0
(Q0), . . . , (pu)]

w|w|−1
(Q|w|−1)) (by Lemma 1)

= ξA
u,w,s(f̂(w,s)(P ), f̂(u,w0)(Q0), . . . , f̂(u,w|w|−1)(Q|w|−1)).

Therefore the S? × S-sorted mapping f̂ is a homomorphism. Moreover, f̂ ◦ h = f ,
because, for every w ∈ S?, s ∈ S, and σ ∈ Σw,s, we have that

f̂(w,s)(hw,s(σ)) = (pw)]
s(σ(vs

0, . . . , v
s
|w|−1))

= σAw(pw
w0

(vs
0), . . . , p

w
w|w|−1

(vs
|w|−1))

= ξA
w,w,s(f(w,s)(σ), (πw

0 )A, . . . , (πw
|w|−1)

A)

= f(w,s)(σ) (H2)

It is obvious that f̂ is the unique homomorphism such that f̂ ◦ h = f . Henceforth
PolH(Σ) is isomorphic to FrH(Σ). ¤

Now, for every many-sorted Σ-algebra A, we state the existence of a homomor-
phism of Hall algebras PdA from PolH(Σ) into Op(A) = Op(A) such that ThΣ(A),
the finitary Σ-equational theory determined by A, is precisely Ker(PdA).

Proposition 5. Let A be a many-sorted Σ-algebra. Then the S? × S-sorted map-
ping PdA from PolH(Σ) into Op(A) = Op(A) defined as PdA = (PdA

(w,s))(w,s)∈S?×S

where, for every (w, s) ∈ S?×S, PdA
(w,s) is the s-th coordinate of PdA

w = (PdA
w,s)s∈S,

the unique homomorphism from FrΣ(↓w) into Op
w
(A) = AAw such that PdA

w ◦η↓w =
pA

w, where pA
w is the S-sorted mapping from ↓w into Opw(A) = AAw defined, for

every s ∈ S and vs
i ∈ (↓w)s, as pA

w,s(vs
i ) = prA

w,i, is a homomorphism of Hall
algebras from PolH(Σ) into Op(A). Moreover, Ker(PdA) = ThΣ(A).

The last part of the Proposition just stated can be extended to classes of many-
sorted Σ-algebras and, in particular, to the models of a family E of finitary Σ-
equations. From this will follow that the operador CgPolH(Σ) is sound relative to
the operador of semantical consequence CnΣ.

Proposition 6. Let K a class of many-sorted Σ-algebras. Then ThΣ(K) is a
congruence on PolH(Σ).

Proof. Because ThΣ(K) is
⋂

A∈KKer(PdA) ∈ Cgr(PolH(Σ)). ¤

Corollary 1 (Soundness Theorem). Let Σ be an S-sorted signature. Then we have
that CgPolH(Σ) ≤ CnΣ.
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Proof. Let E be a part of EqH(Σ). By definition CnΣ(E) = ThΣ(ModΣ(E)), that is a
congruence on PolH(Σ) and contains E , therefore CnΣ(E) contains CgPolH(Σ)(E). ¤

The congruence generated in PolH(Σ) by a family of finitary Σ-equations E can
be characterized as follows.

Proposition 7. Let E be a part of EqH(Σ). Then CgPolH(Σ)(E) is the smallest
part E of EqH(Σ) that contains E and is such that, for every u,w ∈ S? and s ∈ S,
satisfies the following conditions:

(1) Reflexivity. For every P ∈ PolH(Σ)w,s, (P, P ) ∈ Ew,s.
(2) Symmetry. For every P , Q ∈ PolH(Σ)w,s, if (P, Q) ∈ Ew,s, then (Q,P ) ∈

Ew,s.
(3) Transitivity. For every P , Q, R ∈ PolH(Σ)w,s, if (P,Q), (Q,R) ∈ Ew,s,

then (P,R) ∈ Ew,s.
(4) Substitutivity. For every (Mi | i ∈ |w|), (Ni | i ∈ |w|) ∈

∏
i∈|w| PolH(Σ)u,wi

such that, for every i ∈ |w|, (Mi, Ni) ∈ Eu,wi
, and (P, Q) ∈ Ew,s,

(ξu,w,s(P, M0, . . . , M|w|−1), ξu,w,s(Q,N0, . . . , N|w|−1)) ∈ Eu,s.

¤

Let us remark that in the Proposition just stated, the substitutivity condition
for w = λ demands that if (P, Q) ∈ Eλ,s then, for every u ∈ S?, (P,Q) ∈ Eu,s.

Proposition 8. Let E be a part of EqH(Σ) and σ ∈ Σw,s. If, for every i ∈ |w|,
(Pi, Qi) ∈ Ew,wi , then (σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈ Ew,s.

Proof. By reflexivity (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) ∈ Ew,s hence, by substi-
tutivity, (σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈ Ew,s ¤

Proposition 9. Let E be a part of EqH(Σ) and (w, s) ∈ S? × S. If (P, Q) ∈ Ew,s

and f is an endomorphism of FrΣ(↓w), then (fs(P ), fs(Q)) ∈ Ew,s.

Proof. For every i ∈ |w|, the equation (fwi(vi), fwi(vi)) is in Ew,wi . By substitu-
tivity, we have that

(ξw,w,s(P, fw0(v0), . . . , fw|w|−1(v|w|−1)), ξw,w,s(Q, fw0(v0), . . . , fw|w|−1(v|w|−1)))

is in Ew,s, hence (fs(P ), fs(Q)) ∈ Ew,s. ¤

Corollary 2. Let E be a part of EqH(Σ) and w ∈ S?. Then Ew = (Ew,s)s∈S is a
fully invariant congruence on FrΣ(↓w).

We remark that the congruence Ew contains Cgfi
FrΣ(↓w)(Ew), the fully invariant

congruence generated by Ew = (Ew,s)s∈S and, in general, the containment is strict.

Proposition 10. Let E be a part of EqH(Σ) and w ∈ S?. Then FrΣ(↓w)/Ew is a
model of E.

Proposition 11 (Adequacy Theorem). Let Σ be an S-sorted signature. Then we
have that CnΣ ≤ CgPolH(Σ).
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Proof. Let E be a part of EqH(Σ). If (P, Q) ∈ CnΣ(E)w,s, then, because FrΣ(↓w)/Ew

is a model of E , PFrΣ(↓w)/Ew = QFrΣ(↓w)/Ew . Hence

[P ] = [ξw,w,s(P, πw
0 , . . . , πw

|w|−1)]

= [PFrΣ(↓w)(v0, . . . , v|w|−1)]

= PFrΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= QFrΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= [QFrΣ(↓w)(v0, . . . , v|w|−1)]

= [ξw,w,s(Q, πw
0 , . . . , πw

|w|−1)]

= [Q],

and (P, Q) ∈ CgPolH(Σ)(E)w,s. ¤

Corollary 3 (Completeness Theorem of Goguen-Meseguer). Let Σ be an S-sorted
signature. Then we have that CgPolH(Σ) = CnΣ.

The Completeness Theorem of Goguen-Meseguer allows us to obtain a calculus
of finitary Σ-equations, i.e., a calculus on sets of variables of the form ↓w, for
w ∈ S?, or, what amounts to the same, on finite subsets of V . Before we state the
finitary Σ-equational inference rules we agree that (P, Q) : (X, s) means that the
finitary Σ-ecuación (P,Q) is of type (X, s), i.e., that P, Q ∈ FrΣ(X)s, in addition if
P ∈ FrΣ(X)s and P = (Ps)s∈S : X // FrΣ(Y ), then P (x/Ps,x)s∈S, x∈Xs is P]

s(P ).

Proposition 12 (Inference Rules). The following finitary Σ-equational inference
rules determine a closure operator on EqH(Σ) that is identical to the closure oper-
ator CnΣ.

R1 Reflexivity. For all P ∈ FrΣ(X)s, (P, P ) ∈ EX,s, or diagrammatically

(P, P ) : (X, s)
P ∈ FrΣ(X)s

R2 Symmetry. For all P, Q ∈ FrΣ(X)s, if (P, Q) ∈ EX,s, then (Q,P ) ∈ EX,s,
or diagrammatically

(P, Q) : (X, s)
(Q,P ) : (X, s)

R3 Transitivity. For all P, Q, R ∈ FrΣ(X)s, if (P,Q) ∈ EX,s and (Q,R) ∈
EX,s, then (P, R) ∈ EX,s or diagrammatically

(P,Q) : (X, s) (Q,R) : (X, s)
(P, R) : (X, s)

R4 Generalized substitutivity. For all (P, Q) ∈ EX,s and P,Q : X // FrΣ(Y )
such that, for every s ∈ S, x ∈ Xs, (Ps,x, Qs,x) ∈ EY,s,

(ξY,X,s(P, (Ps,x)s∈S, x∈Xs), ξY,X,s(Q, (Qs,x)s∈S, x∈Xs)) ∈ EY,s,

or diagrammatically

(P,Q) : (X, s) ((Ps,x, Qs,x) : (Y, s))s∈S, x∈Xs

(P (x/Ps,x)s∈S, x∈Xs , Q(x/Qs,x)s∈S, x∈Xs) : (Y, s)

Proof. Because the finitary Σ-equational inference rules are the translation of the
conditions in Proposition 7. ¤

Proposition 13. The inference rule R4 is equivalent, assuming R1, to the following
inference rule
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R4′ Substitutivity.

(P, Q) : (X, s) (P ′, Q′) : (Y, t)
(P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪ Y, s) x ∈ Xt [δt,x

t = {x}, δt,x
s = ∅, if s 6= t]

Proof. We begin by proving that R4 implies R4′. If (P,Q) : (X, s) and (P ′, Q′) :
(Y, t) are deducible and x ∈ Xt, then also are deducible, by reflexivity, the fini-
tary Σ-equations in the family ((P ′′s,x, Q′′

s,x) : ((X − δt,x) ∪ Y, s))s∈S, x∈Xs
, where

P ′′t,x = P ′, Q′′t,x = Q′, and otherwise P ′′s,y = Q′′s,y = y. Then, by general-
ized substitutivity, (P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪ Y, s) is deducible, because
P (x/P ′) = (P (x/P ′′s,x)s∈S, x∈Xs

and Q(x/Q′) = Q(x/P ′′s,x)s∈S, x∈Xs
.

Reciprocally, R4′ implies R4, by reiterating the application of R4′ card(
∐

X)-
times. ¤

In some presentations of many-sorted equational logic, e.g., in [5], are introduced
two additional inference rules that allow the adjunction and suppresion of variables,
under some conditions. But as we will prove below both rules are derived rules,
relative to the system of rules R1 to R4.

Definition 8 (Abstraction and concretion).
R5 Abstraction.

(P,Q) : (X, s)
(P, Q) : (X ∪ δt,x, s) x ∈ Vt −Xt

R6 Concretion.
(P, Q) : (X, s)

(P, Q) : (X − δt,x, s)
x ∈ Xt, x 6∈ var(P, Q), FrΣ((∅)s∈S)t 6= ∅.

Proposition 14. The abstraction and concretion rules are derived rules.

Proof. Abstraction is a derived rule. Let y ∈ Vs be such that y 6∈ Xs. Then, by
reflexivity, the finitary Σ-equation (y, y) : (δs,y ∪ δt,x, s) is deducible. Hence, by
substitutivity, the finitary Σ-equation

(y(y/P ), y(y/Q)) : (((δs,y ∪ δt,x)− δs,y) ∪X, s)

that is identical to (P,Q) : (X ∪ δt,x, s), is also deducible. As a particular case we
have that if (P, Q) : ((∅)s∈S , s) is deducible, then (P, Q) : (δt,x, s) is also deducible.

Concretion is a derived rule. Since FrΣ((∅)s∈S)t 6= ∅ let us choose an R ∈
FrΣ((∅)s∈S)t. Then, by reflexivity, the finitary Σ-equation (R,R) : ((∅)s∈S , t) is
deducible. Hence, by substitutivity, (P (x/R), Q(x/R)) : ((X − δt,x) ∪ (∅)s∈S , s) is
also deducible and, because x 6∈ var(P, Q), (P, Q) : (X − δt,x, s) is deducible. ¤
Definition 9 (Replacement rule).

R7 Replacement.

(P i, Qi) : (X,wi)
(σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) : (X, s) σ ∈ Σw,s

Proposition 15. The replacement rule is a derived rule.

Proof. By reflexivity, (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) : (↓w, s) is deducible.
Now, by reiterating substitutivity |w|-times, we obtain the desired finitary Σ-
equation. ¤

Everything we have made up to now can be extended to the case of locally
finitary Σ-equations, i.e., pairs of mappings from δs to FrΣ(X), for some s ∈ S
and X ∈ Sublf(V ) = {X ⊆ V | ∀s ∈ S (Xs is finite) }, we only have to change the
structural operations of the Hall algebras to locally finitary operations. Moreover,
the equational calculus has the same inference rules R1–R4, but generalized to
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locally finite S-sorted sets of variables. However, the rule of substitution is not more
equivalent to the generalized rule of substitution. Finally, the rules of abstraction
and concretion for this case are the following.

Definition 10.
R5′ Generalized abstraction.

(P, Q) : (X, s)
(P, Q) : (X ∪ Y, s)

R6′ Generalized concretion.
(P, Q) : (X, s)

(P, Q) : (X − Y, s) Y ∩ var(P, Q) = ∅, supp(Y ) ⊆ supp(FrΣ((∅)s∈S))

Where, for an S-sorted set Z, supp(Z), the support of Z, is { s ∈ S | Zs 6=
∅ }.

The Completeness Theorem can also be proved alternatively by using instead
of the Hall algebras the Bénabou algebras. This is interesting because, on the one
hand, the category of Bénabou algebras is isomorphic to the category of Bénabou
theories defined in [1] and, on the other hand, the Bénabou algebras even having an
equational presentation radically different from that of the Hall algebras, are equiv-
alent to them, i.e., the respective categories are equivalent. In order to accomplish
such an alternative proof we begin by defining the Bénabou algebras.

Definition 11. Let S be a set of sorts and V B the S? × S?-sorted set of variables
(V(u,w))(u,w)∈S?×S? where, for every (u, w) ∈ S? × S?, V(u,w) = { vu,w

n | n ∈ N }. A
Bénabou algebra for S is a many-sorted (ΣB, EB)-algebra, where ΣB is (S?×S?, ΣB)
and ΣB is the (S?)2-sorted signature, i.e., the (S? × S?)? × (S? × S?)-sorted set,
defined as follows:

(1) For every w ∈ S? and i ∈ |w|,
πw

i : λ // (w, (wi)).

(2) For every u, w ∈ S?,

〈 〉u,w : ((u, (w0)), . . . , (u, (w|w|−1))) // (u,w).

(3) For every u, x, w ∈ S?,

◦u,x,w : ((u, x), (x,w)) // (u,w).

while EB is the part of Eq(ΣB) = (FrΣB(↓w)2(u,x))(w,(u,x))∈(S?×S?)?×(S?×S?) defined
as follows:

B1. For every u, w ∈ S? and i ∈ |w|, the equation

πw
i ◦u,w,(wi) 〈vu,(w0)

0 , . . . , v
u,(w|w|−1)

|w|−1 〉u,w = v
u,(wi)
i

of type (((u, (w0)), . . . , (u, (w|w|−1))), (u, (wi))).
B2. For every u and w ∈ S?, the equation

vu,w
0 ◦u,u,w 〈πu

0 , . . . , πu
|u|−1〉u,u = vu,w

0

of type (((u,w)), (u,w)).
B3. For every u and w ∈ S?, the equation

〈πw
0 ◦u,w,w0 vu,w

0 , . . . , πw
|w|−1 ◦u,w,w|w|−1 vu,w

0 〉u,w = vu,w
0

of type (((u,w)), (u,w)).
B4. For every w ∈ S?, the equation

〈πw
0 〉w,(w0) = πw

0

of type (((w, (w0))), (w, (w0))).
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B5. For every u, x, w, y ∈ S?, the equation

vw,y
0 ◦u,w,y (vx,w

1 ◦u,x,w vu,x
2 ) = (vw,y

0 ◦x,w,y vx,w
1 ) ◦u,x,y vu,x

2

of type (((w, y), (x,w), (u, x)), (u, y)).
where vu,w

n is the n-th variable of type (u,w), Q ◦u,x,w P is ◦u,x,w(P, Q), and
〈P0, . . . , P|w|−1〉u,w is 〈 〉u,w(P0, . . . , P|w|−1). We will write ◦ instead of ◦u,x,w and
〈. . .〉 instead of 〈. . .〉u,w, if there is not risk of misunderstanding. Moreover, we
denote by Alg(B) the category of Bénabou algebras and homomorphisms between
them.

For every S-sorted set A, OpBS
(A) = (HomSet(Aw, Au))(w,u)∈S?×S? is endowed

with a structure of Bénabou algebra.
For every S-sorted signature Σ, PolB(Σ) = (HomSetS(↓u, FrΣ(↓w))(w,u)∈S?×S? is

endowed with a structure of Bénabou algebra if the projections πw
i are interpreted as

the variables vwi
i , the operators 〈〉u,w as the isomorphisms that transform w-families

of formal Σ-polynomials on ↓u into S-sorted mappings from ↓w to FrΣ(↓u), and
the operators ◦u,x,w as the substitutions for families of formal polynomials, that to
families P ∈ FrΣ(↓u)x and Q ∈ FrΣ(↓x)w, assign Q ◦u,x,w P = P] ◦ Q ∈ FrΣ(↓u)w.

Now, once defined the many-sorted algebraic theories of Bénabou and the mor-
phisms between them, we prove that the category of Bénabou algebras is isomorphic
to the category of many-sorted algebraic theories of Bénabou.

Definition 12. Let S be a set of sorts.
(1) A many-sorted algebraic theory of Bénabou for S or, to simplify, a Bénabou

theory for S, is a pair L = (L, p) where L is a category with objects
the words on S and p a family (pw)w∈S? such that, for every word w ∈
S?, pw is a family (pw

i : w // (wi))i∈|w| of morphisms in L, that we call
the projections for w, such that (w, pw) is a product in L of the family
((wi))i∈|w|.

(2) Let L and L′ be two Bénabou theories for S. A morphism on L to L′ is
a functor F on L to L′ such that the object mapping of F is the identity
and the morphism mapping of F preserves the projections, i.e., for every
w ∈ S? and i ∈ |w|, F ((pw

i )L) = (pw
i )L

′
.

Proposition 16. Let S be a set of sorts. The Bénabou theories for S together with
the morphisms between them determine a category BTh(S).

Proposition 17. Let L be a Bénabou algebra for S. Then L = (L, π) with L the
category defined as follows

(1) Ob(L) = S? and L(u,w) = Lu,w.
(2) For every w ∈ S?, idw = 〈(πw

i )L | i ∈ |w|〉w,w.
(3) If P : u // w, Q : w // x, then the composition of P and Q is ◦L

u,w,x(P, Q).
and π the mapping defined, for every w ∈ S?, as πw = ((πw

i )L)i∈|w|, is a Bénabou
theory for S.

Proof. We begin by proving that, for every x ∈ S?, idx is an identity in L. Let
P : u // x and Q : x // w be morphisms in L. Then we have that

P = 〈(πx
i )L ◦ P | i ∈ |x|〉 (by B3)

= 〈(πx
i )L ◦ (〈(πx

i )L | i ∈ |x|〉 ◦ P ) | i ∈ |x|〉 (by B1 and B5)

= 〈(πx
i )L | i ∈ |x|〉 ◦ P (by B3)

Q = Q ◦ 〈(πx
i )L | i ∈ |x|〉 (by B2)
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The composition is associative by B5.
Now we prove that, for every w ∈ S?, (w, ((πw

i )L)i∈|w|) is a product in L of the
family ((wi)i∈|w|). If (Pi : x // wi)i∈|w| is a family of morphisms, then we have
that

(πw
i )L ◦ 〈Pi | i ∈ |w|〉 = Pi (by B1)

Moreover, if Q : x // w is such that (πw
i )L ◦Q = Pi, then

Q = 〈(πw
i )L ◦Q | i ∈ |w|〉 (by B3)

= 〈Pi | i ∈ |w|〉
¤

Proposition 18. Let L = (L, p) be a Bénabou theory for S. Then the family

(Lw,u)(w,u)∈(S?)2 = (L(w, u))(w,u)∈(S?)2

together with, for every w ∈ S? and i ∈ |w|, πw
i = pw

i , for every u,w ∈ S?, 〈〉u,w

the mapping on
∏

i∈|w| L(u,wi) to L(u,w) obtained by the universal property of
the product for w, and, for every u, x, w ∈ S?, ◦u,w,x the composition in L, is a
Bénabou algebra L.

Proposition 19. The categories Alg(BS) and BTh(S) are isomorphic.

Proof. Let T be the functor on Alg(BS) to BTh(S) that to a Bénabou algebra
L assigns the Bénabou theory (L, πL), and to a morphism of Bénabou algebras
f : L // K assigns the morphism of Bénabou theories T (f) that to P : w // u
associates fw,u(P ) : w // u.

Let A be the functor on BTh(S) to Alg(BS) that to a Bénabou theory L = (L, p)
assigns the Bénabou algebra corresponding to L and to a morphism of Bénabou
theories F : L // L′ assigns the morphism of Bénabou algebras, that for u,w ∈ S?,
is the bi-restriction of F to L(u,w) and L′(u,w).

The functors T and A are mutually inverses, therefore the categories Alg(BS)
and BTh(S) are isomorphic. ¤

Now we state the equivalence between the categories of Hall and Bénabou alge-
bras.

Proposition 20. The categories Alg(H) and Alg(B) are equivalent.

Proof. Let B: Alg(H) // Alg(B) be the functor that to a Hall algebra A as-
signs the Bénabou algebra B(A) that has as underlying S? × S?-sorted set B(A) =
((Aw)u)(w,u)∈(S?)2 , where Aw = (Aw,s)s∈S and (Aw)u =

∏
i∈|u|Aw,ui , and as alge-

braic structure that defined as

(πw
i )B(A) = ((πw

i )A),

〈(a0), . . . , (a|w|−1)〉B(A)
u,w = (ξA

u,w,w0
(πw

0 , a0, . . . , a|w|−1), . . .

ξA
u,w,w|w|−1

(πw
|w|−1, a0, . . . , a|w|−1)),

◦B(A)
u,x,w(a, b) = (ξA

u,x,w0
(b0, a0, . . . , a|x|−1), . . .

ξA
u,x,w|w|−1

(b0, a0, . . . , a|x|−1));

and to an homomorphism f : A // B of Hall algebras assigns the homomorphism
B(f) = ((fw)u)(w,u)∈(S?)2 , defined for (a0, . . . , a|u|−1) in (Aw)u as

(a0, . . . , a|u|−1) 7−→ (fw,u0(a0), . . . , fw,u|u−1|(a|u|−1))).
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Reciprocally, let H: Alg(B) // Alg(H) be the functor that to a Bénabou al-
gebra A assigns the Hall algebra H(A) that has H(A) = (Aw,(s))(w,s)∈S?×S as
underlying S? × S-sorted set, and as algebraic structure that defined as

(πw
i )H(A) = (πw

i )A,

ξH(A)
u,w,s(a0, a1, . . . , a|w|) = a0 ◦u,w,s 〈a1, . . . , a|w|〉u,w;

and to an homomorphism f : A // B of Bénabou algebras assigns the bi-restriction
of f to B(A) and B(B).

Next, for a Bénabou algebra A, we prove that A and B H(A) are isomorphic.
Let f : A // BH(A) be the S? × S?-sorted mapping defined, for (u,w) ∈ S? × S?

and a ∈ Au,w, as
a 7→ ((πw

0 )A ◦ a, . . . , (πw
|w|−1)

A ◦ a).

The definition is sound because, for a ∈ Au,w, we have that (πw
i )A ◦ a ∈ H(A)u,wi

,
hence ((πw

0 )A ◦ a, . . . , (πw
|w|−1)

A ◦ a) ∈ BH(A)u,w. Thus defined it is easy to prove
that f is a homomorphism.

Reciprocally, let g : B H(A) // A be the S? × S?-sorted mapping defined, for
(u,w) ∈ S? × S? and b ∈ BH(A), as

b 7→ 〈b0, . . . , b|w|−1〉A

The definition is sound because, for b = (b0, . . . , b|w|−1) ∈ BH(A), we have that
bi ∈ H(A)u,wi , hence bi ∈ Au,(wi), therefore 〈b0, . . . , b|w|−1〉A ∈ Au,w. Thus defined
it is easy to prove that g is a homomorphism.

Now we prove that the homomorphisms f and g are such that g ◦ f = idA and
f◦g = idB H(A). On the one hand, if a ∈ Au,w, then 〈(πw

0 )A◦a, . . . , (πw
|w|−1)

A◦a〉 = a

by B3, hence g ◦ f = idA. On the other hand, if b ∈ BH(A), fu,w ◦ gu,w(b) is the
mapping

b 7→〈b0, . . . , b|w|−1〉Au,w

7→((πw
0 )B H(A) ◦ 〈b0, . . . , b|w|−1〉Au,w, . . . , (πw

|w|−1)
B H(A) ◦ 〈b0, . . . , b|w|−1〉Au,w)

= ((πw
0 )A ◦ 〈b0, . . . , b|w|−1〉Au,w, . . . , (πw

|w|−1)
A ◦ 〈b0, . . . , b|w|−1〉Au,w)

= 〈b0, . . . , b|w|−1〉Au,w

where the last step is justified by the axiom B1, hence f ◦ g = idB H(A).
Finally, for a Hall algebra A we have that A and H B(A) are identical, because

a ∈ Aw,s iff a ∈ B(A)w,(s) iff a ∈ H B(A)w,s. ¤

Proposition 21. Let
∐

1×GS
: SetS?×S // SetS?×S?

be the functor determined by
the mapping 1× GS from S? × S into S? × S? that to a pair (w, s) assigns (w, (s)).
Then for the diagram

SetS?×S Alg(H)

SetS?×S? Alg(B)

oo GH

>
FrH

//OO

∆1×GSa
∐

1×GS

²²

OO

H≡B

²²oo GB

>
FrB

//

we have that FrB ◦
∐

1×GS

∼= B ◦ FrH and ∆1×GS
◦GB = GH ◦H
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Corollary 4. Let Σ be an S-sorted signature. Then the Bénabou algebra PolB(Σ)
is isomorphic to FrB(

∐
1×GS

Σ).

Proof. Because PolB(Σ) = B(PolH(Σ)). ¤

If we agree that EqB(Σ) denotes PolB(Σ)2, then the congruence generated in
PolB(Σ) by a subfamily E of EqB(Σ) can be characterized as follows.

Proposition 22. Let E be a part of EqB(Σ). Then CgPolB(Σ)(E) is the smallest
part E of PolB(Σ) that contains E and is such that, for every u,w, x ∈ S? satisfies
the following conditions:

(1) Reflexivity. For every P ∈ PolB(Σ)w,u, (P,P) ∈ Ew,u.
(2) Simmetry. For every P, Q ∈ PolB(Σ)w,u, if (P,Q) ∈ Ew,u, then (Q,P) ∈

Ew,u.
(3) Transitivity. For every P, Q, R ∈ PolB(Σ)w,u, if (P,Q), (Q,R) ∈ Ew,u,

then (P,R) ∈ Ew,s.
(4) Product compatibility. For every P, Q ∈ PolB(Σ)u,w, if, for every i ∈ |w|,

(Pi, Qi) ∈ Eu,(wi), then (〈P0, . . . , P|w|−1〉, 〈Q0, . . . , Q|w|−1〉) ∈ Eu,w

(5) Substitutivity. For every P, Q ∈ PolB(Σ)u,x and M,N ∈ PolB(Σ)x,w, if
(P,Q) ∈ Eu,x and (M,N ) ∈ Ex,w, then (M◦P,N◦Q) = (P]◦M,Q]◦N ) ∈
Eu,w.

Now we define two pairs of order preserving mappings, in opposite directions,
between the ordered sets Sub(EqH(Σ)) and Sub(EqB(Σ)) that will allow us to assert
that the category Sub(EqH(Σ)) is a retract of Sub(EqB(Σ)) in the category Adj of
categories and adjunctions.

Proposition 23. Let Σ be an S-sorted signature. Then the mappings H, D from
Sub(EqB(Σ)) into Sub(EqH(Σ)) defined as

H(E) = ({(P,Q) ∈ EqH(Σ)w,s | (P, Q) ∈ Ew,(s)})(w,s)∈S?×S

D(E) =
({

(P,Q) ∈ EqH(Σ)w,s

∣∣∣∣
∃(R,S) ∈ Ew,u, ∃i ∈ u−1[s],

(P, Q) = (Ri, Si)

})

(w,s)∈S?×S

and the mappings I, B from Sub(EqH(Σ)) into Sub(EqB(Σ)) defined as

I(E ′) = ({ (P,Q) ∈ EqB(Σ)w,u | ∃s ∈ S (u = (s) and (P, Q) ∈ E ′w,s) })(w,u)∈S?×S?

B(E ′) = ({ (P,Q) ∈ EqB(Σ)w,u | ∀i ∈ |u| ((Pi, Qi) ∈ E ′w,ui
) })(w,u)∈S?×S?

are order preserving. Moreover, H ◦I = D◦I = H ◦B = D◦B = idSub(EqH(Σ)) and,
for every E ⊆ EqH(Σ) and E ′ ⊆ EqB(Σ), we have that D(E) ⊆ E ′ iff E ⊆ B(E ′) and
I(E ′) ⊆ E iff E ′ ⊆ H(E), hence D aB and I aH. Finally, because the composite
adjunction D ◦ I aH ◦B is the identity adjunction, we conclude that Sub(EqH(Σ))
is a retract of Sub(EqB(Σ)) in the category Adj of categories and adjunctions.

Proposition 24. Let Σ be an S-sorted signature. Then the lattices Cgr(PolH(Σ))
and Cgr(PolB(Σ)) are isomorphic.

Proof. If E ∈ Cgr(PolH(Σ)) then CgPolB(Σ)(B(E)) = B(CgPolH(Σ)(E)) ⊆ B(E) and
B(E) ∈ Cgr(PolB(Σ)).

Reciprocally, if E ∈ Cgr(PolB(Σ)), then CgPolH(Σ)(H(E)) ⊆ H(CgPolB(Σ)(E)) ⊆
H(E) and H(E) ∈ Cgr(PolH(Σ)). But, because H ◦B = idSub(EqH(Σ)), we only have
to verify that, for every E ∈ Cgr(PolB(Σ)), B(H(E)) = E . If (P,Q) ∈ B(H(E))u,w,
then, for every i ∈ |w|, (Pi, Qi) ∈ H(E)u,wi , hence (Pi, Qi) ∈ Eu,(wi) and (P,Q) ∈
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Eu,w. If (P,Q) ∈ Eu,w, then, for every i ∈ |w|, (Pi, Qi) ∈ Eu,(wi), hence (Pi, Qi) ∈
H(E)u,wi

and (P,Q) ∈ B(H(E))u,w. ¤

Corollary 5 (Completeness Theorem). Let Σ be an S-sorted signature. Then the
algebraic lattice Cgr(PolB(Σ)) is isomorphic to the algebraic lattice of fixed points
of CnΣ.

3. Polynomials and equations for monads.

In this section we define, for a monad in a category, the concepts of polynomial,
equation and the relation of validation of an equation in an algebra for the monad.
From this, as in the classical case, we also obtain a contravariant Galois connection
between the ordered class of classes of T-algebras and the ordered set of families of
T-equations.

Definition 13. Let T = (T, η, µ) be a monad in a category C and X, Y objects
in C.

(1) A T-polynomial of type (X, Y ) is a morphism P : Y // T (X) in C. We
identify the T-polynomials with the morphisms in Kl(T)op, the dual of
the Kleisli category of T, hence P : X // Y in Kl(T)op is P : Y // X in
Kl(T) or, what amounts to the same, P : Y // T (X) in C.

(2) A T-equation of type (X,Y ) is a pair (P, Q) of T-polynomials of type
(X, Y ). We identify the T-equations with the parallel pairs of morphisms
in Kl(T)op.

We agree that Pol(T) denotes the category Kl(T)op and call it the category
of T-polynomials. On the other hand, Eq(T) is (HomPol(T)(X, Y )2)(X,Y )∈C2 , the
C2-sorted set of T-equations. Moreover, we call the C2-sorted subsets of Eq(T),
that are the relations on the category Pol(T), families of T-equations.

To avoid misunderstandings we denote by ¦ the composition in Kl(T) and
Pol(T), preserving the standard notation for the composition in the category C.
Therefore, if Q : Z // T (Y ) and P : Y // T (X) are morphism in Kl(T), then
P ¦Q = µX ◦ T (P ) ◦Q.

Now we define for a monad in a category, on the one hand, the realization of
the polynomials relative to the monad in the algebras for the monad and, on the
other, the concept of validation of an equation for the monad in an algebra for the
monad.

Definition 14. Let T be a monad in C and (A, α) a T-algebra. Then every T-
polynomial P : X // Y induces a mapping P (A,α) : HomC(X, A) // HomC(Y, A),
the realization of P in (A,α), that to a morphism f : X // A assigns the morphism
α ◦ T (f) ◦ P : Y // A.

From now on, we agree that to say that a diagram of the form

a
f // b

g //

h
// c

k // d+

commutes, means that k ◦ g ◦ f = k ◦ h ◦ f . We extend this convention to similar
diagrams.

Definition 15. Let (A,α) be a T-algebra and (P,Q) a T-equation of type (X,Y ).
We say that (P,Q) is valid in (A,α), denoted by (A,α) |=TX,Y (P,Q), if for every
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f : X // A, α ◦ T(α) ◦ P = α ◦ T(α) ◦Q, i.e., if the following diagram commutes

Y
P //

Q
// T (X)

T (f)
// T (A) α // A+

or, equivalently, if P (A,α) = Q(A,α). If K ⊆ EM(T), where EM(T) is the Eilenberg-
Moore category of T, then we agree that K |=TX,Y (P,Q) means that, for every
(A,α) ∈ K, (A, α) |=TX,Y (P, Q).

As for general algebra, from the concept of validation we also obtain a contravari-
ant Galois connection.

Definition 16. Let T be a monad in C.
(1) If K ⊆ EM(T), then the T-equational theory determined by K, ThT(K), is

ThT(K) =
({

(P, Q) ∈ Eq(T)X,Y | ∀(A,α) ∈ K ((A,α) |=TX,Y (P, Q))
})

(X,Y )∈C2

(2) If E ⊆ Eq(T), then the T-equational class determined by E , ModT(E), has
as elements the T-algebras (A,α) that validate each equation of E , i.e.,

ModT(E) =
{

(A,α) ∈ EM(T)
∣∣∣∣
∀X, Y ∈ C, ∀(P, Q) ∈ EX,Y ,

(A,α) |=TX,Y (P, Q)

}

Proposition 25. Let T be a monad in C, E, E ′ two families of T-equations and
K, K′ two classes of T-algebras. Then the following holds:

(1) If E ⊆ E ′, then ModT(E ′) ⊆ ModT(E).
(2) If K ⊆ K′, then ThT(K′) ⊆ ThT(K).
(3) E ⊆ ThT(ModT(E)) and K ⊆ ModT(ThT(K)).

Therefore the pair of mappings ThT and ModT is a contravariant Galois connection.

The categories associated to the lattices of classes of T-algebras and families
of T-equations are related by the adjunction ModT a ThT, i.e., for every class K
of T-algebras and every family E of T-equations, we have that K ⊆ ModT(E) iff
E ⊆ ThT(K), because of the contravariance.

Definition 17. Let T be a monad in C. We denote by CnT the closure operator
ThT ◦ModT on Eq(T) and we call the CnT-closed sets T-equational theories. If E
is a family of T-equations and (P, Q) a T-equation of type (X, Y ), then we say
that (P,Q) is a semantical consequence of E if ModT(E) ⊆ ModT(P,Q), i.e., if
(P, Q) ∈ ThT(ModT(E))X,Y .

4. The completeness theorem for monads in categories of sorted
sets.

In this last section once defined, for a congruence on a category, the concept
of lim←−-compatible congruence, and his particular case that of Π-compatible con-
gruence, we prove the completeness theorem for a monad in a category of sorted
sets, in the version that says that the lattice of Π-compatible congruences on the
category of polynomials for a monad in a category of sorted sets is identical to the
lattice of equational theories for the monad. But before that, because we need the
quotient algebras to prove the completeness theorem, we define and characterize,
for a monad in a category of sorted sets, the concept of congruence on an algebra
in the Eilenberg-Moore category for the monad.

Definition 18. Let S be a set of sorts, T a monad in SetS , (A,α) a T-algebra
and Φ an equivalence on A. We say that Φ is a congruence on (A,α) if there is a
ξ : T (Φ) // Φ such that
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(1) (Φ, ξ) is a T-algebra.
(2) The restrictions p0 and p1 to Φ of the canonical projections pr0 and pr1

from A×A to A are T-morphisms from (Φ, ξ) to (A,α).

If Φ is a congruence on (A,α), then we denote by (A/Φ, α/Φ) the T-quotient algebra.

Proposition 26. Let S be a set of sorts, T a monad in SetS, (A,α) a T-algebra
and Φ an equivalence on A. Then Φ is a congruence on (A,α) iff the following
diagram commutes:

T (Φ)
T (p0)

//

T (p1)
// T (A) α // A

prΦ // A/Φ+

and for the unique ξ : T (Φ) // Φ such that p0 ◦ξ = α◦T (p0) and p1 ◦ξ = α◦T (p1),
(Φ, ξ) is a T-algebra.

Proposition 27. Let S be a set of sorts, T a monad in SetS, (A,α) a T-algebra
and Φ an equivalence on A. Then are equivalent:

(1) The following diagram commutes

T (Φ)
T (p0)

//

T (p1)
// T (A) α // A

prΦ // A/Φ+

(2) For every a, b : Y // A if prΦ ◦ a = prΦ ◦ b, then the following diagram
commutes

T (Y )
T (a)

//

T (b)
// T (A) α // A

prΦ // A/Φ+

Proof. Let us suppose that prΦ ◦α ◦ T (p0) = prΦ ◦α ◦ T (p1) and let a, b : Y // A
be such that prΦ ◦ a = prΦ ◦ b. Then, because (Φ, p0, p1) is the kernel pair of
prΦ : A // A/Φ, there is a unique f : Y // Φ such that p0 ◦ f = a and p1 ◦ f = b.
From this follows that the following diagram

T (Y )
T (f)

//

GF ED
T (a)

²²

@A BC
T (b)

OO
T (Φ)

T (p0)
//

T (p1)
// T (A) α // A

prΦ // A/Φ

commutes. The reciprocal is obvious. ¤

Definition 19. Let C be a category, E a congruence on C, I a category and
D : I // C a diagram of type I in C, i.e., a functor from I in C.

(1) Given two projective cones (Y, β), (Y, γ) from an object Y of C to D we
say that β and γ are E-congruent, denoted by β ≡E γ, if, for every i ∈ I,
we have that (βi, γi) ∈ EY,Di .

(2) We say that E is a lim←−(D)-compatible congruence on C if, for every projec-
tive limit (lim←−(D), π) of D and every pair of projective cones (Y, β), (Y, γ)
from an object Y of C to D, if β ≡E γ, then 〈β〉 , 〈γ〉 : Y // lim←−(D), the
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unique morphisms such that, for every i ∈ I, πi ◦ 〈β〉 = βi and πi ◦ 〈γ〉 = γi,
are E-congruents, i.e., (〈β〉 , 〈γ〉) ∈ EY,lim←−(D).

Y

β

##
γ

**

〈γ〉
­­

〈β〉
··

lim←−(D)
π

// D

²²²²²²

We say that E is a Π(D)-compatible congruence on C if E is a lim←−(D)-
compatible congruence on C when I is discrete.

(3) We say that E is a lim←−-compatible congruence if, for every D : I // C, E
is a lim←−(D)-compatible congruence on C. If, for every discrete diagram D,
E is a Π(D)-compatible congruence, then we say that E is a Π-compatible
congruence on C.

We remark that the concepts in the above Definition can be dualized. Moreover,
the behaviour relative to the morphisms of the lim←−-compatible congruences is like
that of the algebraical congruences relative to the homomorphisms, as stated in the
following Proposition.

Proposition 28. Let C be a category, D, D′ : I // C two diagrams of type I in C,
E a lim←−(D) and lim←−(D′)-compatible congruence on C and σ, τ : D +3 D′ two natu-
ral transformations from D to D′. Then, for every projective limits (lim←−(D), π) of D

and (lim←−(D′), π′) of D′, the unique morphisms 〈σ ◦ π〉 , 〈τ ◦ π〉 : lim←−(D) // lim←−(D′)
such that, for every i ∈ I, π′i ◦ 〈σ ◦ π〉 = σi ◦ πi and π′i ◦ 〈τ ◦ π〉 = τi ◦ πi, are E-
congruents.

Corollary 6. Let C be a category, (Ai)i∈I , (Bi)i∈I two families of objects in C,
E a Π-compatible congruence on C, and (fi)i∈I , (gi)i∈I two families of morphisms
from (Ai)i∈I to (Bi)i∈I . If, for every i ∈ I, fi and gi are E-congruent, then

∏
i∈I fi

and
∏

i∈I gi are E-congruent.

Proposition 29. Let C be a category with products. Then the ordered set of Π-
compatible congruences on C, Cgr

∏
(C) = (Cgr

∏
(C),⊆), is a complete lattice.

Definition 20. Let C be a category with products. We denote by Cg
∏

C the closure
operator on the set of relations on C that to a relation E on C assigns the smallest
Π-compatible congruence on C that contains E .

Now we prove that the Kleisli category of a monad T in a category C has
coproducts if C has coproducts. From this follows that, for every set of sorts
S and monad T in SetS , the category Pol(T) has products, because it is the
dual of Kl(T), therefore on the category Pol(T) we have the corresponding closure
operator Cg

∏

Pol(T) that we will use to prove the Completeness Theorem for monads
in categories of sorted sets.

Proposition 30. Let T be a monad in C. If C has coproducts, then Kl(T) has
coproducts.

Proof. Let (Xi)i∈I be a family of objects in Kl(T). Then
∐

i∈I Xi, together with
the family of morphisms (η∐

i∈I Xi
◦ ini)i∈I , is a coproduct in Kl(T) of (Xi)i∈I .
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Let (fi : Xi
// Y )i∈I be a family of morphisms in Kl(T). Then we have, in C,

the commutative diagram

Xi
ini //

fi
$$IIIIIIIIIIIII

∐
i∈I Xi

η∐
i∈I Xi //

[fi]i∈I

²²

T (
∐

i∈I Xi)

T ([fi]i∈I)
²²

T (Y ) T (T (Y ))µY

oo

and [fi]i∈I :
∐

i∈I Xi
// Y in Kl(T) satisfies the universal property. ¤

Corollary 7. Let T be a monad in C. If C has coproducts, then Pol(T) has
products. Therefore, for every set of sorts S and every monad T in SetS, Pol(T)
has products.

Next we prove that the Π-compatible congruences on the category of polynomials
for a monad in a category of sorted sets, are determined by the pairs of morphisms
in the congruence with codomains deltas of Kronecker. Moreover, from now on, for
a monad T = (T, η, µ) in SetS we denote by ηX and µX the values of η and µ,
respectively, in the S-sorted set X.

Proposition 31. Let T be a monad in SetS and E a Π-compatible congruence on
Pol(T). Then (P,Q) ∈ EX,Y iff, for every s ∈ S and (y) : δs // Y in SetS, we
have that (P ◦ (y), Q ◦ (y)) ∈ EX,δs .

Proof. Before we proceed to the proof, we remark that, for every (y) : δs // Y ,
ηY ◦(y) is a morphism in Pol(T) from Y to δs. Moreover, if R : X // Y is another
morphism in Pol(T), then (ηY ◦ (y)) ¦R = R ◦ (y).

If (P, Q) ∈ EX,Y , then, for every s ∈ S and (y) : δs // Y , because E is a
congruence, we have that (P ◦ (y), Q ◦ (y)) ∈ EX,δs .

Reciprocally, if, for every s ∈ S and (y) : δs // Y , (P ◦ (y), Q ◦ (y)) ∈ EX,δs ,
then, because (Y, (ηY ◦ (y))s∈S,y∈Ys) is a product in Pol(T) of (δs)s∈S,y∈Ys and E is
Π-compatible, it follows that the pair (〈P ◦ (y)〉s∈S,y∈Ys , 〈Q ◦ (y)〉s∈S,y∈Ys) ∈ EX,Y .
But, by the universal property of the product, (〈P ◦(y)〉s∈S,y∈Ys , 〈Q◦(y)〉s∈S,y∈Ys) =
(P, Q), hence (P, Q) ∈ EX,Y . ¤

Next we prove the Soundness Theorem, i.e., that for every subclass K of the
Eilenberg-Moore category for the monad T, the T-equational theory ThT(K) is a
Π-compatible congruence on Pol(T).

Theorem 1 (Soundness Theorem). Let S be a set and T a monad in SetS. Then
every T-equational theory is a Π-compatible congruence on Pol(T).

Proof. Let ThT(K) be a T-equational theory for some K ⊆ EM(T). Then, for every
X, Y ∈ SetS , ThT(K)X,Y is an equivalence on HomPol(T)(X, Y ).

Now we prove that the equivalence ThT(K) is compatible with the composition
in Pol(T). Let (P, Q) ∈ ThT(K)X,Y be and R : Y // Z a morphism in Pol(T).
Then, for every T-algebra (A,α) and morphism f : X // A, the following diagram
in SetS commutes:

Y
P //

Q
// T (X)

T (f)
// T (A) α // A

Z
R

// T (Y )
T (P )

//

T (Q)
// T (T (X))

µX

OO

T (T (f))
// T (T (A))

µA

OO

T (α)
// T (A)

α

OO+

+
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Therefore, (R ¦ P, R ¦Q) ∈ ThΣ(K)X,Z .
Let W : U // X be a morphism in Pol(T). Then, for every T-algebra (A,α)

and morphism f : U // A, the following diagram commutes

Y
P //

Q
// T (X)

T (W )
// T (T (U))

T (T (f))
//

µU

²²

T (T (A))
T (α)

//

µA

²²

T (A)

α

²²
T (U)

T (f)
// T (A) α

// A

+

Therefore (P ¦W,Q ¦W ) ∈ ThΣ(K)U,Y .
Lastly, we prove that ThT(K) is Π-compatible. Let (P i)i∈I and (Qi)i∈I be two

families of morphisms in Pol(T) such that, for every i ∈ I, (P i, Qi) ∈ ThT(K)X,Y i ,
(A,α) a T-algebra in K and f : X // A a morphism in SetS . Then we have the
following diagram in SetS

Y i ini
//

P i

((QQQQQQQQQQQQQQQQQQQQQQ

Qi

((QQQQQQQQQQQQQQQQQQQQQQ

∐
i∈I Yi

[P i]i∈I

²²

[Qi]i∈I

²²
T (X)

T (f)
// T (A) α

// A

For every i ∈ I, let f i be the morphism α ◦T (f) ◦P i = α ◦T (f) ◦Qi. Then, by the
universal property of

∐
i∈I Y i, there exists a unique [f i]i∈I :

∐
i∈I Y i // A such

that, for every i ∈ I, [f i]i∈I ◦ ini = f i. Moreover, for every i ∈ I, we have that
α ◦ T (f) ◦ [P i]i∈I ◦ ini = f i = α ◦ T (f) ◦ [Qi]i∈I ◦ ini, hence α ◦ T (f) ◦ [P i]i∈I =
α ◦ T (f) ◦ [Qi]i∈I , therefore ([P i]i∈I , [Qi]i∈I) ∈ ThT(K)X,

∐
i∈I Y i . ¤

We remark that the Soundness Theorem is equivalent to Cg
∏

Pol(T) ≤ CnT, because
the lattices of closure operators and closure systems on a set are anti-isomorphic.

Now in order to prove the Adequacy Theorem, i.e., that every Π-compatible
congruence E on Pol(T) is identical to ThT(K) for some class K of T-algebras, we
begin by associating to every family E of T-equations and S-sorted set X a many-
sorted relation EX on T (X) in such a way that for E a Π-compatible congruence
on Pol(T), EX will be a congruence on (T (X), µX). Then to obtain the Theorem
just mentioned it will be enough to take as K = {(T (X)/EX , µX/EX) | X ∈ US}.
Definition 21. Let T be a monad in SetS , E a family of T-equations and X an
S-sorted set. Then we denote by EX the many-sorted relation on T (X) defined as
follows

EX = ({(p, q) ∈ T (X)2s | ((p), (q)) ∈ EX,δs})s∈S ,

where, for s ∈ S and p ∈ T (X)s, (p) is the associated mapping from δs to T (X).

Lemma 2. Let T a monad in SetS, E a Π-compatible congruence on Pol(T) and
X an S-sorted set. Then, for every S-sorted set Y and every (P, Q) ∈ Eq(T)X,Y ,
the following conditions are equivalents:

(1) (P, Q) ∈ EX,Y .
(2) The following diagram commutes

Y
P //

Q
// T (X)

prEX

// T (X)/EX+
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Proof. Let us suppose that (P, Q) ∈ EX,Y . Then, for every s ∈ S and (y) : δs // Y

in SetS , in the following diagram in Kl(T)

δs

GF ED
P ◦ (y)

²²ηY ◦ (y)
//

@A BC
Q ◦ (y)

OOY
P //

Q
// X

we have that P ◦(y) = P ¦(ηY ◦(y)) and Q◦(y) = Q¦(ηY ◦(y)), by the definition of
¦ and because η is natural and µX ◦ηT (X) is the identity in T (X). Therefore, given
that E is a congruence, (P ◦ (y), Q◦ (y)) ∈ EX,δs , hence (Ps(y), Qs(y)) ∈ EX,s. From
this and taking into account that the deltas of Kronecker are a set of generators for
SetS , follows that prEX ◦ P = prEX ◦Q.

Reciprocally, if prEX ◦ P = prEX ◦ Q, then, for every (y) : δs // Y and s ∈ S,
prEX ◦ P ◦ (y) = prEX ◦Q ◦ (y), hence (P ◦ (y), Q ◦ (y)) ∈ EX,δs . Therefore, by the
Proposición 31, (P, Q) ∈ EX,Y . ¤

Proposition 32. Let T be a monad in SetS and E a Π-compatible congruence on
Pol(T). Then, for every S-sorted set X, EX is a congruence on (T (X), µX).

Proof. The many-sorted relation EX is an equivalence on T (X) because E is, in
particular, an equivalence. Now, by the Proposition 27, instead of proving that
prEX ◦µX ◦T (p0) = prEX ◦µX ◦T (p1), we prove that, for every a, b : Y // T (X), if
prEX ◦a = prEX ◦b, then prEX ◦µX ◦T (a) = prEX ◦µX ◦T (b). Let a, b : Y // T (X)
be two S-sorted mappings such that prEX ◦ a = prEX ◦ b. Then, by the Lemma 2,
we have that (a, b) ∈ EX,Y . But for the following diagram in Kl(T)

T (Y )
GF ED

µX ◦ T (a)

²²idT (Y ) //
@A BC

µX ◦ T (b)

OOY
a //

b
// X

we have that µX ◦T (a) = a ¦ idT (Y ) and µX ◦T (b) = b ¦ idT (Y ). Therefore, because
E is a congruence on Pol(T), (µX ◦ T (a), µX ◦ T (b)) ∈ EX,T (Y ). Hence, once more,
by the Lemma 2, the following diagram in SetS

T (Y )
T (a)

//

T (b)
// T (T (X))

µX
// T (X)

prEX

// T (X)/EX+

commutes. Moreover, (EX , ξ), where ξ is the unique morphism from T (EX) to
EX such that p0 ◦ξ = µX ◦ T (p0) and p1 ◦ξ = µX ◦ T (p1), is a T−subalgebra of
(T (X), µX)2. Therefore EX is a congruence on (T (X), µX). ¤

Proposition 33. Let T be a monad in SetS, E a Π-compatible congruence on
Pol(T), X, Y two S-sorted sets and (P, Q) ∈ EX,Y . Then, for every S-sorted set
Z, (T (Z)/EZ , µZ/EZ) |=TX,Y (P, Q).

Proof. Let f : X // T (Z)/EZ be a valuation. Then, because prEZ is a retraction,
there exists an R : X // T (Z) such that f = prEZ ◦R. Henceforth, (P ¦R, Q¦R) ∈
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EZ,Y , and by the Lemma 2, prEZ ◦µZ ◦T (R) ◦P = prEZ ◦µZ ◦T (R) ◦Q. From this
follows the commutativity of the following diagram

T (T (Z))
µZ

//

T (prEZ )
²²

T (Z)

prEZ

²²
Y

P //

Q
// T (X)

T (R)
77nnnnnnnnnnnnnnnnn

T (f)
// T (T (Z)/EZ)

µZ/EZ

// T (Z)/EZ+

Therefore (T (Z)/EZ , µZ/EZ) |=TX,Y (P,Q). ¤

Theorem 2 (Adequacy Theorem). Let S be a set and T a monad in SetS. Then
every Π-compatible congruence on Pol(T) is a T-equational theory.

Proof. Let E be Π-compatible congruence on Pol(T). We will prove that E =
ThT(K), where K = {(T (X)/EX , µX/EX) | X ∈ US}. Let X, Y be two S-sorted
sets and (P, Q) ∈ EX,Y , then, by Proposition 33, K |=TX,Y (P, Q), hence E ⊆
ThT(K). Reciprocally, for (P, Q) ∈ ThT(K)X,Y and prEX ◦ ηX : X // T (X)/EX ,
in the following diagram

T (T (X))
µX

//

T (prEX )
²²

T (X)

prEX

²²
Y

P //

Q
// T (X)

T (ηX)
77nnnnnnnnnnnnnnnnn

T (prEX ◦ ηX)
// T (T (X)/EX)

(1)

µX/EX

// T (X)/EX

(2)

+

the triangle (1), the square (2) and the bottom row commute. Moreover, we have
that µX ◦ T (ηX) = idX , hence prEX ◦ P = prEX ◦ Q. Therefore, by Lemma 2,
(P, Q) ∈ EX,Y . ¤

We remark that the Adequacy Theorem is equivalent to CnT ≤ Cg
∏

Pol(T), because
the lattices of closure operators and closure systems on a set are anti-isomorphic.

Corollary 8 (Completeness Theorem). Let S be a set and T a monad in SetS.
Then, the lattice of Π-compatible congruences on Pol(T) and the lattice of the T-
equational theories are identical or, what is equivalent, CnT = Cg

∏

Pol(T).

As we know, for a set of sorts S and a monad T in SetS , the category Pol(T) of T-
polynomials has a set of cogenerators, the deltas of Kronecker, and is a category with
products. From this follows that a T-equation (P, Q) ∈ Eq(T)X,Y is valid in a T-
algebra (A,α) iff every equation in Eq(T)X,δs obtained from (P,Q) by composition
with a morphism R : Y // δs in Pol(T), is valid in (A, α). This fact allows us,
without loss of generality, to restrict, for monads in categories of sorted sets, to
consider exclusively equations which have as codomain a delta of Kronecker δs,
for some sort s ∈ S. Moreover, for this type of equation, we have a consequence
operator directly definible and equivalent to the operator CgΠ

Pol(T).

Definition 22. Let T be a monad in SetS and Eqδ(T) the US ×S-sorted family
(HomPol(T)(X, δs)2)(X,s)∈US ×S . Then Modδ

T and Thδ
T are the operators defined as
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follows:

Modδ
T





Sub(Eqδ(T)) // Sub(EM(T))

D 7→
{

(A,α) ∈ EM(T)
∣∣∣∣
∀(X, s) ∈ US ×S, ∀(P,Q) ∈ DX,s,

(A,α) |=TX,δs (P,Q)

}

Thδ
T





Sub(EM(T)) // Sub(Eqδ(T))

K 7→
({

(P,Q) ∈ Eqδ(T)X,s

∣∣∣∣
∀(A,α) ∈ K,

(A,α) |=TX,δs (P, Q)

})

(X,s)∈US ×S

The pair of mappings Thδ
T and Modδ

T is a contravariant Galois connection.

Proposition 34. Let T be a monad in SetS. Then the operators I, H, D and B,
defined as:

I

{
Sub(Eqδ(T)) // Sub(Eq(T))

D 7→ ({
(P, Q) ∈ Eq(T)X,Y

∣∣ ∃s ∈ S (Y = δs & (P, Q) ∈ DX,s)
})

(X,Y )∈(US)2

H

{
Sub(Eq(T)) // Sub(Eqδ(T))

E 7→ ({
(P, Q) ∈ Eqδ(T)X,s

∣∣ (P,Q) ∈ EX,δs

})
(X,s)∈US ×S

D

{
Sub(Eq(T)) // Sub(Eqδ(T))

E 7→ ({
(P ◦ (y), Q ◦ (y)) ∈ Eqδ(T)X,s

∣∣ (P, Q) ∈ EX,Y , y ∈ Ys

})
(X,s)∈US ×S

B





Sub(Eqδ(T)) // Sub(Eq(T))

D 7→
({

(P,Q) ∈ Eq(T)X,Y

∣∣∣∣
∀s ∈ S, ∀(y) : δs // Y,
(P ◦ (y), Q ◦ (y)) ∈ DX,s

})
(X,Y )∈(US)2

are order preserving. Moreover, H ◦ I = D ◦ I = H ◦ B = D ◦ B = idSub(Eqδ(T))
and, for every E ⊆ Eq(T) and D ⊆ Eqδ(T), we have that D(E) ⊆ D iff E ⊆ B(D)
and I(D) ⊆ E iff D ⊆ H(E), hence DaB and I aH.

From the Proposition just stated we can conclude that the unit of the adjunction
I aH and the counit of the adjunction DaB are identities. Moreover, the composite
adjunction D◦I aH ◦B is the identity adjunction, hence the category Sub(Eqδ(T))
is a retract of Sub(Eq(T)) in the category Adj of categories and adjunctions.

Proposition 35. Let T be a monad in SetS. Then the following diagrams commute

Sub(Eq(T) Sub(EM(T))op

Sub(Eqδ(T)) Sub(EM(T))op

ModT
//

oo ThT
>

Modδ
T

//
oo

Thδ
T

>

D

²²

OO

Ba

Sub(Eqδ(T)) Sub(EM(T))op

Sub(Eq(T) Sub(EM(T))op

Modδ
T

//
oo

Thδ
T

>

ModT
//

oo ThT
>

I

²²

OO

Ha

This fact implies that the adjunctions ModTaThT and Modδ
TaThδ

T are equivalent
in a convenient 2-category of adjunctions, algebraic morphisms of adjunctions and
deformations between algebraic morphisms of adjunctions.

For the equations in Eqδ(T) we define a closure system Cδ
T such that the lattices

(Cδ
T,⊆) and CgrΠ(Pol(T)) are isomorphic.
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Proposition 36. Let T be a monad in SetS and Cδ
T be the set of all those parts E

of Eqδ(T) that satisfy the following conditions:
(1) For every (X, s) ∈ US ×S, EX,s is an equivalence.
(2) For every (P,Q) ∈ EY,s and (P ′, Q′) ∈ HomPol(T)(X,Y )2, if, for every t ∈ S

and (y) : δt // Y , (P ′ ◦ (y), Q′ ◦ (y)) ∈ EX,t, then (P ¦ P ′, Q ¦Q′) ∈ EX,s.

Then Cδ
T is a closure system on Eqδ(T).

Proposition 37. Let T be a monad in SetS. Then we have that the lattices (Cδ
T,⊆)

and CgrΠ(Pol(T)) are isomorphic.
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